Midterm 1 Take-home

Joe Puccio

October 2, 2014

Collaborators: Sana Imam, Ryan Allan, Rahul Ramkumar, Max Daum, and Matthew Lem-
ing, Nathan Weatherly.

1.

a) Assuming that we can’t compare bolts with bolts and nuts with nuts, and assuming that it is acceptable
to consider the average run time rather than the worst case of randomized Quicksort, we accept for the
purposes of this proof that randomized Quicksort performs in o(k?). Then we may implement Quicksort
by choosing a random pivot bolt, and then partitioning the nuts with this bolt into two regions, one with
elements less than or equal to the pivot and one with elements just greater than the pivot. This will require
k tests to complete. Because we are guaranteed that every bolt has a match and each nut has a distinct
diameter, we know that we’ll find this bolt’s corresponding nut during the operation and it’ll be the last
element in the less or equal to region. Now, we’ll use this corresponding nut to partition the bolts in the same
manner that is described above, but because we already know which bolt this nut corresponds to, we will
only have to make k — 1 tests. We know that all of the nuts in the region larger than the original bolt-pivot
each have a corresponding bolt in the region larger than the original nut-pivot, and the same is true for the
smaller region as well. This means that we can repeat this operation on each of these regions just as we did
originally as all of the conditions are the same, simply with a different number of terms. Thus, we can write
the tests performed in our algorithm the following recurrence:

T(1) =1

k
Tk)y=k+(k—1)+ 2T(§)
Now, this unpacks to be cklog(k), which we know falls below dk? regardless of the choice of d, Yk > kg for

some kq. All that is left is to read off the diagonal which can be done in k time, which also is certainly o(k?),
and thus we have shown that our entire algorithm can be done in o(k?) time.

b) Now considering the situation where we are not guaranteed that matching pairs exist, let’s consider
the case where, for every nut there exist no bolts that match it. This is possible scenario that may arise
and we will show that no algorithm is capable of completing in better than k? tests. For an algorithm to
be valid, it must halt (complete) on an input and it must produce the valid output. In our scenario, a valid
output would be the comprehensive set of bolt-nut matches, which means that a valid algorithm must test
each bolt per nut (or vice versa) if no such match exists, in order to be valid. But now considering our earlier
case where an input is given where no matches exist, then we can easily conclude that any valid algorithm
must have tested each (n,b) € N x B, which means it must have performed k? tests, and therefore every
algorithm must be Q(k?).



2.

a) i) Handling one insertion: we will update the weight values while traversing the tree to insert the new
node, and then after the insertion is completed we will splay on the inserted node. We assume that the
weights will be properly updated in the rotations involved with splay, and therefore our weight values will
be correct once the overall insert and splay operations are done. Our method of updating the weights is to
traverse the tree to find the location to insert the new node. During this traversal, add 1 to each of the nodes
you examine as they will become an ancestor of this new node once it’s inserted (top-down). Alternatively,
assuming nodes have parent pointers, once the node has been inserted you may traverse back up to the root
from the inserted node’s location adding 1 to each of these parents (bottom-up). No other weights will be
affected and the worst case run time is O(h), where h denotes the height of the tree.

ii) Handling one deletion: again, splay trees will call splay after a node’s deletion so we assume that the sub-
sequent rotations following this deletion will correctly update the relevant weights. Our method of removal
is to traverse down to the node to be deleted, subtracting 1 from each examined node as each of them will
be losing a descendant once the node is deleted (this is a top-down approach). Alternatively, if the nodes
hold parent pointers, we may do this process bottom-up. No other weights will be affected and the worst
case run time is again O(h), where h denotes the height of the tree.

iii) Handling one rotation: the rotation, and corresponding weight changes, will depend on the structure of
the ancestors. Note: for simplicity in all of the following cases, let the weight of node.left/right actually
be the number of nodes including node.le ft/right; this will make summaries simpler. We consider the left
"7ig” case where a node x is to be swapped with its parent node p, and x is p’s left child (without loss
of generality, this same operation will be applicable, mirrored, to the right child case). The weight of x
would change to p.weight. Conversely, p’s weight would change to p.weight — x.le ft.weight — 1. These are
the only weights that need to be updated as a result of this change. Now consider the left ”zig-zig” case,
where z is to be swapped with its grandparent node g, and has a parent node p. The weight of = would
become g.weight, the weight of p would become p.weight — x.le ft.weight + g.right.weight, and the weight
of g would become p.right.weight + g.right.weight. Now, by symmetry the same for the right ”zig-zig” case
is trivial. Lastly, we must consider the left ”zig-zag” case, again with nodes z, p, and g with identical rela-
tionships. The weight of « becomes g.weight, p would become p.weight — (x.left.weight + g.right.weight),
and g would become p.right.weight + g.right.weight 4+ 1. Again, the mirror scenario can be solved trivially.
And we have thus showed how to update weights during all rotations. Because these operations are local
to an area of the tree (they do not need to examine all nodes in the tree), they require only constant time O(1).

b) It can be calculated top-down while searching for a node. Initialize rank = 1, and call currentNode
the node we’re currently comparing our key against. As we traverse down the tree in search of the matching
key, if we navigate to the left subtree of currentNode we leave the value of rank unchanged, and if we
navigate right subtree we add (1 4 currentNode.le ft.weight) to the value of rank because we know that all
of these nodes and currentNode (hence +1) will come before our node in an in-order traversal. Lastly, when
we finally find the node, we return the current value of rank + currentNode.le ft.weight, which is important
when the node being searched for is not a leaf of the BST. The worst case run time is O(h), where h denotes
the height of the tree.

¢) Initialize inversions to 0, then say we set newRank = T.insert(key) and after this insertion we in-
cremented a variable count which holds the current number of nodes in the tree. Then, assuming the
following code had executed on all previous insertions, the variable inversions would store the number of
inversions up until and including the last insertion:

1: if newRank < count then

2: inversions += (count — newRank)

3: end if



d) First, let’s create points (or ”flags”) for each of the endpoints of the segments where each flag con-
tains its x and y position as well as whether it’s the start flag of a segment (lower y coord) or the terminal
flag (larger y coord), and put them all into an array. Then we can sort this array based on y coordinate,
which can be done using Mergesort, for example, in O(nlogn). Now using the BST data structure from
part ¢ (using y-value as the order property), we may navigate through our sorted array and insert the start
flags and remove the corresponding start flag when we reach a terminal flag. On these removals, we can run
a find on the flag before removing it to check its rank and set rankToRemove equal to it. Then, for each
removal with intersections initialized to 0 we execute the following code:

1: if rankToRemove > 1 then

2: intersections += (rankToRemove — 1)

3: end if
. At the end of all of the insertions and deletions, intersections will hold the number of intersections of all
the segments.



